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Abstract. The boundary shift integral (BSI) is a widely used tech-
nique to measure atrophy in dementia. In this work we extend the BSI
method through the use of probabilistic posteriors obtained through a 4D
expectation-maximization (EM) segmentation framework. Our method
exploits the probabilistic information of these posteriors to calculate an
accurate region of interest (ROI) on which the generalized BSI is evalu-
ated. We present a complete framework which refines spatial probabilis-
tic priors for a baseline and a follow-up magnetic resonance (MR) scan
simultaneously and incorporates this spatial information in a probabilis-
tic BSI (PBSI) measure. To ensure a consistent estimate, we follow a
symmetric strategy by transforming baseline and follow-up images to a
common, intermediate coordinate system. We use the resulting atrophy
measure to compute group separation between normal subjects, patients
with mild cognitive impairment (MCI) and patients with Alzheimer’s
Disease (AD). We show the superiority of this approach over state-of-
the-art methods on the ADNI cohort. We focus on a prediction of the
conversion from MCI to AD, which is technically very challenging but
clinically most useful. We present atrophy rates comparable to published
manual rates and obtain a classification accuracy for separating stable
and progressive MCI patient groups of 70.8%.

1 Introduction

The most common form of dementia is Alzheimer’s Disease (AD). While a con-
clusive diagnosis can only be obtained through pathological confirmation, hip-
pocampal volume loss has been shown to be a good marker for the presence of
AD [1]. Decline in hippocampal volume is also predictive at the stage of mild
cognitive impairment (MCI) [1]. Accurate atrophy measurement based on MR
images could thus assist the diagnosis of AD before a conventional clinical di-
agnosis is established or the assessment of the potential of disease-modifying
therapies [2]. The anatomical structure of the hippocampus is complex. Manual
labeling of the hippocampal region is thus time consuming [1] and leads to intra-
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and inter-rater variability. This motivates the need for accurate and automatic
methods. For example, in [3] the scans of single timepoints are nonrigidly aligned
with a probabilistic atlas which is then employed to segment the hippocampus.
To quantify hippocampal atrophy automatically in longitudinal structural MR
images several techniques have been proposed: These techniques are either based
on the automatic segmentation of the hippocampal area, using for example graph
cuts [4], or on registration-based methods such as the boundary shift integral
(BSI) [1, 2].

In this work we present a model that exploits advantages of both segmentation-
and registration-based approaches, by incorporating subject-specific probabilis-
tic spatial information into the original BSI formulation [5]. Our method relies
on probability maps that we enhance with a 4D expectation-maximization (EM)
algorithm [6], which refines prior information based on the intensities of the im-
ages. We avoid bias towards either of the two timepoints by following a symmet-
ric strategy [2, 7]. We evaluate the proposed method by comparing classification
accuracies, atrophy rates and samples sizes on a subset of the ADNI cohort to a
state-of-the-art method based on graph cuts [4].

2 Method

2.1 Notation and Prerequisites

In the following we consider a pair of T1-weighted MR images, It and It+1, of
the same subject acquired at different timepoints. Let the n voxels in an MR
image be indexed by i = 1, . . . , n. Denoting the intensity at a voxel as yi ∈ Rm
an image can be defined as It = {y1, y2, . . . , yn}. In this paper we focus on the
single channel case (m = 1). For a given image I the corresponding probabilistic
segmentation is given as Sprob = {z1, z2, . . . , zn}, where zi is a vector of size
K and the kth component represents the probability that a voxel belongs to
a structural class k. Since hippocampal atrophy is a characteristic of AD, we
focus in this work on the segmentation of the hippocampus. The component of
Sprob that is representing the hippocampus label is abbreviated, for a certain
timepoint and thus for an image It, as pt. We denote the rigid transformation
from the coordinate system of It to that of It+1 as RIt,It+1 . Parameters are
denoted as lower case Greek letters and sets with Ω.

We assume that individual brain masks are available to skull-strip all baseline
images, It, and that subject-specific probabilistic priors for the hippocampal
region in the baseline scan, ptprior, exist. These priors can be calculated with,
for example, multi-atlas propagation techniques such as LEAP [8]. Subsequent
timepoints It+1 can be skull-stripped using a rigid transformation RIt,It+1 of the
baseline masks. All skull-stripped images are intensity normalized, since the BSI
is defined on intensity differences on normalized images [5].

2.2 Symmetrizing the process

In order to process both timepoints simultaneously we transform each pair of
baseline and follow up images to their common intermediate rigid space. This



is important to reduce bias introduced by asymmetric interpolation [7] or by
randomly defining one of the coordinate systems, of It or It+1, as reference
coordinate system [2]. The symmetrizing is carried out using the rigid transfor-
mation R0.5

It,It+1 obtained by taking the square root of the transformation matrix
of RIt,It+1 . Probabilistic spatial hippocampus priors, which are required for each
baseline scan, are then also rigidly mapped to this common space. Following this
symmetric approach both baseline and follow-up image are mapped and resliced
in the same space, which reduces bias towards one coordinate system [2, 7].

2.3 Posteriors through 4D EM optimization

The challenge is to estimate the underlying but unknown probabilistic segmen-
tations Stprob,S

t+1
prob by means of the observed intensities yti , y

t+1
i and the

available subject-specific probabilistic priors ptprior and pt+1
prior. We adopt the

common assumption [6] that the observed log-transformed intensities of vox-
els belonging to a certain class k are normally distributed with mean µk and
standard deviation σk. The overall parameters for this intensity model are thus
Φ = {(µ1, σ1), (µ2, σ2), . . . , (µK , σK)}. By assuming the same parameters Φ for
both timepoints, we model and segment both timepoints simultaneously in a 4D
EM framework. Smoothness within the segmentations is enforced with a global
and stationary Markov Random Field (MRF) [6].

Our model thus consists of one Gaussian intensity distribution (µ1, σ1), that
models the intensity distribution within the hippocampus at both timepoints,
and K − 1 Gaussian distributions modeling the intensities in the background.
Prior spatial information is incorporated by a thresholded version of the available
subject-specific soft segmentation of the hippocampus, where we use the same
prior for both timepoints. We thus have:

ptprior(i) = pt+1
prior(i) =


α, if ptprior(i) > α

0, if ptprior(i) < β

ptprior(i), else

(1)

A mask on which the 4D EM refinement is carried out, can be obtained by
dilating a region defined by the spatial priors ptprior and pt+1

prior.

2.4 Probabilistic Boundary Shift Integral

We calculate the volume change ∆v between a structure in the follow-up scan
It+1 and the corresponding structure in the baseline scan It based on a modified
version of the boundary shift integral (BSI), which was proposed by Freeborough
et al. [5]. To incorporate the spatial information provided by the probabilistic
segmentations Stprob,S

t+1
prob into the measure, we define a probabilistic bound-

ary shift integral (PSBI). We introduce a novel spatially dependent weighting
function γ(i) ≡ γ(Stprob,S

t+1
prob, i) that can be defined to adapt the model to



the application. The PBSI is calculated on a region of interest (ROI) Ω covering
the boundary of the hippocampus to surrounding tissue. We define the PBSI as:

∆v =
vvoxel

ξhigh − ξlow

∑
i∈Ω

γ(i)(clip(It+1(i), ξlow, ξhigh)− clip(It(i), ξlow, ξhigh)) (2)

where the thresholds ξlow and ξhigh are to be defined such that ξlow represents
intensities outside and ξhigh inside the hippocampus respectively. The clipping
function is defined as:

clip(yi, ξlow, ξhigh) =


ξlow, if yi < ξlow

yi, if ξlow ≤ yi ≤ ξhigh
ξhigh, if yi > ξhigh

(3)

Since we have probabilistic segmentations (Stprob,S
t+1

prob) of the hippocampus
in baseline and follow-up scans available, the ROI Ω can be obtained completely
automatically. In order to calculate Ω, we generalize the definition given in [5]
and compute ΩPBSI based on probability maps. We use the fuzzy union and
intersection of two probabilistic maps:

∪(pi, pj) := max(pi, pj) ∩ (pi, pj) := min(pi, pj) (4)

and the binarized versions depending on thresholds η and ζ :

∩η(pi, pj) :=

{
1, if η ≤ ∩(pi, pj)

0, else
∪ζ (pi, pj) :=

{
1, if ζ ≤ ∪(pi, pj)

0, else
(5)

The ROI ΩPBSI is then given as the difference, Ω̄ \ Ω̆, of a region Ω̄ describing
the outer boundary of the ROI and an interior region lying completely within
the hippocampus Ω̆.

Ω̆ = εne

[
∩η(Stprob,S

t+1
prob)

]
Ω̄ = %nd

[
∪ζ(Stprob,St+1

prob)
]

(6)

The operators εne and %nd denote the ne- and nd-times application of the erosion
and dilation operators. A common choice is ne = nd = 1 for both the erosion and
dilation operator [5]. In our model we can also achieve and control the erosion
by varying η for Ω̆. The model also allows to control the calculation of Ω̄ via
the parameter ζ. Fig. 1 shows an example of a ROI, computed based on either
hard segmentations (ΩBSI) or the proposed method (ΩPBSI).

3 Experimental Results

We evaluated our method on 377 subjects from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI, adni.loni.ucla.edu) database [9], where we segmented
the left hippocampus. The cohort consisted of the 105 healthy controls (CN),
189 subjects with MCI and 83 AD patients for which a 12 month follow-up



Fig. 1. ROI (red) for the calculation of BSI. Based on hard labels
(ΩBSI, left) and based on the proposed method with probabilistic
labels (ΩPBSI, right) [η = 0.95, ne = 0 and ζ = 0.90, nd = 1].

scan, spatial priors [8], brain masks for the baseline scans [10] and results from
a reference method [4] were available. The MCI group is further divided into
110 non-converting, stable (sMCI) and 79 converting, progressive MCI patients
(pMCI) respectively. The main focus was on classification accuracy, but atrophy
rate and sample size calculations were also performed.

In the following, we compare five different approaches against volume changes
computed on the left hippocampus with a state-of-the-art method based on
graph cuts (‘4D GC’) [4]. We denote the atrophy computation based on label
volumes obtained by the 4D EM segmentation as ‘4D EM’. This approach is
expected to perform similar to 4D GC since it represents also an intensity based
refinement of spatial priors computed with LEAP [8]. Next to these we calculated
atrophy rates based on the standard BSI, with a ROI based on hard labels
(ΩBSI, Fig. 1), and different versions of the PBSI with ROIs either ΩBSI or
ΩPBSI. For this we defined γ as either γ ≡ 1 (‘PBSI1’), which represents the
standard BSI with the ROI determined according to the proposed method, or
γ = max(0.5, ptprob, p

t+1
prob) (‘PBSIγ ’). The latter version decreases the weight of

voxels that do not clearly represent hippocampal tissue.

3.1 Preprocessing Strategy and Parameters

For skull-stripping we employed brain masks obtained by a semi-automatic pro-
cedure as described in [10]. We then computed robustly intensity-scaled versions
of the T1 MR images and mapped the baseline It, the 12 month follow-up scans
It+1 and the probabilistic priors obtained through LEAP [8] to a common space
as described in Section 2.2.
We thresholded the spatial prior for the hippocampus with parameters α = 0.8
and β = 0. We consider an upper threshold of 0.8 as reasonable since it slightly
relaxes the priors and thus allows non-hippocampal tissue in the follow-up scan
to change the label. The MRF parameter controlling the connectivity over time
was set to 0, since we do not want to penalize the detection of a decrease in la-
bel volume over time. Since different tissue types, including cerebrospinal fluid,



white matter and non-hippocampal gray matter, are expected within the region
of interest we set the parameter K = 4 and thus model the background with 3
different distributions. The spatial priors for the 3 different background classes
were built in a manner based on the probability fraction left undefined by the
hippocampal prior and intensities of the images. For a maximum intensity value
of 255, the lower and upper bounds for the clipping function were set to ξlow = 75
and ξhigh = 125. As parameters for erosion and dilation we used η = 0.95, ne = 0
and ζ = 0.90, nd = 1 respectively. We chose parameters without explicit training
and kept them fixed for all evaluations.

3.2 Classification Accuracy

We employed a bootstrapping approach, as used in [4], to separate clinical groups
based on atrophy rates. We randomly selected 75% of the subjects for each group
and classified the remaining 25% based on their difference from the mean esti-
mated on the training sets. Specificity, sensitivity and accuracy averaged over
1000 runs are shown in Table 1. As expected, classification rates for the 4D GC
and the 4D EM approach are comparable. For the sMCI-pMCI comparison, 4D
GC performs 1.8% better than the EM approach. When directly comparing these
intensity-based approaches, one needs to consider that the preprocessing proce-
dures were different while the same spatial LEAP-priors were used. All BSI based
methods clearly outperform 4D GC and 4D EM in sMCI-pMCI classification.
For classification we observed best results for PBSIΩBSI

γ which is evaluated on a
comparably rough ROI based on hard labels but incorporating spatial hippocam-
pal information. It should be pointed out that the standard BSI is evaluated on
a larger, potentially a too large, ROI ΩBSI and thus not necessarily based on
hippocampal structure alone.

Method Statistics CN-pMCI CN-AD sMCI-pMCI sMCI-AD

4D GC Spec./Sens. 69.9/65.4 75.8/68.5 69.4/62.0 74.2/65.8
Accuracy 68.0 72.6 66.3 70.6

4D EM Spec./Sens. 68.7/63.0 76.8/66.8 66.7/61.3 73.2/64.7
Accuracy 66.3 72.4 64.5 69.6

BSIΩBSI Spec./Sens. 70.8/71.4 75.4/69.1 71.5/69.6 76.1/63.1
Accuracy 71.1 72.7 70.7 70.5

PBSIΩPBSI
1 Spec./Sens. 70.5/68.6 74.1/69.7 73.1/66.4 77.1/64.1

Accuracy 69.7 72.2 70.3 71.6

PBSIΩBSI
γ Spec./Sens. 72.7/70.7 77.1/66.5 74.3/66.0 80.6/61.6

Accuracy 71.9 72.5 70.8 72.5

PBSIΩPBSI
γ Spec./Sens. 72.7/67.1 76.5/64.5 75.3/61.5 78.9/58.4

Accuracy 70.3 71.3 69.6 70.2

Table 1. Classification results based on the left hippocampus in % obtained using a
25% leave-one-out strategy for separating AD groups obtained with 4D GC, 4D EM,
BSIΩBSI , PBSIΩPBSI

1 , PBSIΩBSI
γ and PBSIΩPBSI

γ .



3.3 Atrophy rates

Mean and standard deviation of the atrophy rates used for classification are
shown in Table 2. Since volume loss depends on different factors, such as age, it
is difficult to accurately predict atrophy rates [3]. However, compared to other
methods and rates based on manual segmentations, as for example [1], PBSI1
especially BSI seem to consistently overestimate atrophy rates. This may be due
to the fact that without considering spatial information BSI potentially includes
too many voxels at the boundaries, especially in the standard BSI where the ROI
is defined using hard labels. Thus a decrease in intensity might contribute to the
measured atrophy rate without considering if a voxel belongs to the hippocam-
pus at all. In the presented framework we are able to calculate more realistic
rates since we relax this problem by incorporating spatial information. This is
confirmed by the atrophy rates presented for PBSIγ .

4D GC 4D EM BSIΩBSI PBSIΩPBSI
1 PBSIΩBSI

γ PBSIΩPBSI
γ

Normal -1.1 (2.0) -2.0 (2.9) -2.4 (5.2) -1.9 (4.3) -1.3 (3.1) -1.1 (2.9)
Atrophy sMCI -1.7 (2.3) -2.3 (2.8) -4.0 (6.1) -3.1 (4.7) -2.3 (3.7) -1.9 (3.1)

rates pMCI -3.1 (2.4) -4.0 (2.9) -7.5 (6.3) -6.0 (5.2) -4.5 (4.0) -3.7 (3.4)
AD -3.7 (2.5) -4.9 (4.1) -8.9 (8.0) -7.2 (6.5) -5.5 (5.1) -4.6 (4.3)

MCI (uncor.) 297 240 349 354 376 393
Sample MCI (CN-cor.) 1190 2007 1105 1117 1100 1102

sizes AD (uncor.) 110 176 203 208 209 217
AD (CN-cor.) 228 504 378 381 366 368

Table 2. Mean atrophy rates of the left hippocampus in % (top) and sample sizes
for atrophy measurement on the MCI and AD group (bottom) for 4D GC, 4D EM,
BSIΩBSI , PBSIΩPBSI

1 , PBSIΩBSI
γ and PBSIΩPBSI

γ . Standard deviation in brackets. Cor-
rected sample sizes were computed on the excess change over normal aging.

3.4 Sample Sizes

In a hypothetical two-arm study, the required study population to measure a
specified change in atrophy rate is of particular interest. We present estimated
sample sizes to detect a 25% change in atrophy rate (effect size∆ = 0.25µ) for the
MCI (pMCI and sMCI) and AD patient group in Table 2. We selected a power
(1− β) of 0.8 (z1−β ≈ 0.84) and significance α of 5% (z1−0.05/2 ≈ 1.96). Follow-
ing recent communication in the neuroimaging community [11], discussing the
importance of relating atrophy rates in dementia to normal atrophy during ag-
ing, we provide sample sizes that are both corrected and uncorrected for normal
aging. We observed comparable corrected sample sizes for MCI for all evaluated
methods, so that no significant difference can be assumed. Sample sizes for AD
are smallest for 4D GC.



4 Conclusion

We presented a symmetric probabilistic extension of the boundary shift integral
(PBSI) and employed it to classify 377 AD patients grouped by different clinical
diagnoses. We observed an increased accuracy of up to 4.5% for the classifica-
tion of stable versus progressive MCI groups, which shows the superiority of our
model that incorporates prior spatial information. In the presented experiment
we showed accuracies of over 70% for this clinically highly relevant prediction
of MCI conversion. Relative volume changes and sample sizes of the proposed
method seem reasonable and are comparable to published atrophy rates. Our
model offers a spatially dependent weighting function γ that allows to incorpo-
rate prior information into the integral computation. While the more accurate
determination of the ROI seems of less importance, we believe that incorporation
of spatial information using γ might be the key to robust atrophy measurement.
In future it will be very interesting to investigate the influence of parameters and
to employ this approach for atrophy measurement on other brain structures.

References

1. Leung, K.K., Barnes, J., Ridgway, G.R., et al.: Automated cross-sectional and
longitudinal hippocampal volume measurement in mild cognitive impairment and
Alzheimer’s disease. In: NeuroImage, 51(4), pp. 1345–1359, 2010.

2. Leung, K.K, Ridgway, G.R., Ourselin, S., et al.: Consistent multi-time-point brain
atrophy estimation from the boundary shift integral. In: NeuroImage, 59(4), pp.
3995-4005, 2012.

3. Chupin, M., Gerardin, E., Cuingnet, R., et al.: Fully automatic hippocampus seg-
mentation and classification in Alzheimer’s disease and mild cognitive impairment
applied on data from ADNI. In: Hippocampus, 19(6), pp. 579–587, 2009.

4. Wolz, R., Heckemann, R.A., Aljabar, P., et al.: Measurement of hippocampal atro-
phy using 4D graph-cut segmentation: Application to ADNI. In: NeuroImage, 52(1),
pp. 109–118, 2010.

5. Freeborough, P.A., Fox, N.C.: The boundary shift integral: an accurate and robust
measure of cerebral volume changes from registered repeat MRI. In: IEEE TMI,
16(5), pp. 623–629, 1997.

6. Van Leemput, K., Maes, F., Vandermeulen, D., et al.: Automated model-based tissue
classification of MR images of the brain. In: IEEE TMI, 18(10), pp. 897–908, 1999.

7. Yushkevich, P.A., Avants, B.B., Das, S.R., et al.: Bias in estimation of hippocam-
pal atrophy using deformation-based morphometry arises from asymmetric global
normalization: An illustration in ADNI 3 T MRI data. In: NeuroImage, 50(2), pp.
434–445, 2010.

8. Wolz, R, Aljabar, P., Hajnal, J.V., et al.: LEAP: Learning embeddings for atlas
propagation. In: NeuroImage, 49(2), pp. 1316–1325, 2010.

9. Mueller, S.G., Weiner, M.W., Thal, L.J., et al.: The Alzheimer’s Disease Neuroimag-
ing Initiative. In: Neuroimaging Clinics of North America, 15(4), pp. 869–877, 2005.

10. Leung, K.K., Barnes, J., Modat, M., et al.: Brain MAPS: An automated, accurate
and robust brain extraction technique using a template library. In: NeuroImage,
55(3), pp. 1091–1108, 2011.

11. Fox, N.C., Ridgway, G.R., Schott, J.M.: Algorithms, atrophy and Alzheimer’s dis-
ease: Cautionary tales for clinical trials. In: NeuroImage, 57(1), pp. 15–18, 2011.


